2013年12月24日 星期二

[研究] Apache Mahout 0.8 (bin) 安裝 (CentOS 6.5 x64)

[研究] Apache Mahout 0.8 (bin) 安裝 (CentOS 6.5 x64)

2013-12-24

Mahout's goal is to build scalable machine learning libraries.

官方網站
http://mahout.apache.org/

簡介
https://cwiki.apache.org/confluence/display/MAHOUT/Overview

下載
http://www.apache.org/dyn/closer.cgi/mahout/
http://ftp.tc.edu.tw/pub/Apache/mahout/0.8/mahout-distribution-0.8.tar.gz

需求
Java 1.6.x or greater.
Maven 3.x to build the source code.

安裝參考
https://cwiki.apache.org/confluence/display/MAHOUT/BuildingMahout
https://cwiki.apache.org/confluence/display/MAHOUT/Mahout+Wiki#MahoutWiki-Installation%2FSetup


安裝

# 安裝 JAVA
[root@localhost local]# wget --no-cookies --no-check-certificate --header "Cookie: gpw_e24=http%3A%2F%2Fwww.oracle.com%2F" "http://download.oracle.com/otn-pub/java/jdk/7u45-b18/jdk-7u45-linux-x64.rpm"  -O  jdk-7u45-linux-x64.rpm

[root@localhost local]# rpm -ivh jdk-7u45-linux-x64.rpm
[root@localhost local]# alternatives --install /usr/bin/java java /usr/java/jdk1.7.0_45/bin/java 100

[root@localhost local]# alternatives --config java

There are 3 programs which provide 'java'.

  Selection    Command
-----------------------------------------------
*+ 1           /usr/lib/jvm/jre-1.7.0-openjdk.x86_64/bin/java
   2           /usr/lib/jvm/jre-1.6.0-openjdk.x86_64/bin/java
   3           /usr/java/jre1.7.0_45/bin/java

Enter to keep the current selection[+], or type selection number: 3

[root@localhost local]# export JAVA_HOME=/usr/java/jdk1.7.0_45

[root@localhost local]# java -version
java version "1.7.0_45"
Java(TM) SE Runtime Environment (build 1.7.0_45-b18)
Java HotSpot(TM) 64-Bit Server VM (build 24.45-b08, mixed mode)
[root@localhost local]#

# 安裝 Hadoop 1.2.1 Binary
wget http://archive.apache.org/dist/hadoop/core/hadoop-1.2.1/hadoop-1.2.1-bin.tar.gz
tar zxvf hadoop-1.2.1-bin.tar.gz
export HADOOP_HOME=/usr/local/hadoop-1.2.1
export PATH=$HADOOP_HOME/bin:$PATH

export HADOOP_CONF_DIR=/usr/local/hadoop-1.2.1/conf
export CLASSPATH=${CLASSPATH}:$HADOOP_CONF_DIR



# 安裝 Apache Mahout 0.8 Binary
wget http://ftp.tc.edu.tw/pub/Apache/mahout/0.8/mahout-distribution-0.8.tar.gz
tar zxvf mahout-distribution-0.8.tar.gz
export MAHOUT_HOME=/usr/local/mahout-distribution-0.8
export PATH=$MAHOUT_HOME/bin:$PATH

#如果要想Mahout運行在Hadoop上,則MAHOUT_LOCAL必須為空
export MAHOUT_LOCAL=

[root@localhost local]# mahout
MAHOUT_LOCAL is not set; adding HADOOP_CONF_DIR to classpath.
Warning: $HADOOP_HOME is deprecated.

Running on hadoop, using /usr/local/hadoop-1.2.1/bin/hadoop and HADOOP_CONF_DIR=/usr/local/hadoop-1.2.1/conf
MAHOUT-JOB: /usr/local/mahout-distribution-0.8/mahout-examples-0.8-job.jar
Warning: $HADOOP_HOME is deprecated.

An example program must be given as the first argument.
Valid program names are:
  arff.vector: : Generate Vectors from an ARFF file or directory
  baumwelch: : Baum-Welch algorithm for unsupervised HMM training
  canopy: : Canopy clustering
  cat: : Print a file or resource as the logistic regression models would see it
  cleansvd: : Cleanup and verification of SVD output
  clusterdump: : Dump cluster output to text
  clusterpp: : Groups Clustering Output In Clusters
  cmdump: : Dump confusion matrix in HTML or text formats
  concatmatrices: : Concatenates 2 matrices of same cardinality into a single matrix
  cvb: : LDA via Collapsed Variation Bayes (0th deriv. approx)
  cvb0_local: : LDA via Collapsed Variation Bayes, in memory locally.
  dirichlet: : Dirichlet Clustering
  eigencuts: : Eigencuts spectral clustering
  evaluateFactorization: : compute RMSE and MAE of a rating matrix factorization against probes
  fkmeans: : Fuzzy K-means clustering
  fpg: : Frequent Pattern Growth
  hmmpredict: : Generate random sequence of observations by given HMM
  itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering
  kmeans: : K-means clustering
  lucene.vector: : Generate Vectors from a Lucene index
  lucene2seq: : Generate Text SequenceFiles from a Lucene index
  matrixdump: : Dump matrix in CSV format
  matrixmult: : Take the product of two matrices
  meanshift: : Mean Shift clustering
  minhash: : Run Minhash clustering
  parallelALS: : ALS-WR factorization of a rating matrix
  qualcluster: : Runs clustering experiments and summarizes results in a CSV
  recommendfactorized: : Compute recommendations using the factorization of a rating matrix
  recommenditembased: : Compute recommendations using item-based collaborative filtering
  regexconverter: : Convert text files on a per line basis based on regular expressions
  resplit: : Splits a set of SequenceFiles into a number of equal splits
  rowid: : Map SequenceFile<Text,VectorWritable> to {SequenceFile<IntWritable,VectorWritable>, SequenceFile<IntWritable,Text>}
  rowsimilarity: : Compute the pairwise similarities of the rows of a matrix
  runAdaptiveLogistic: : Score new production data using a probably trained and validated AdaptivelogisticRegression model
  runlogistic: : Run a logistic regression model against CSV data
  seq2encoded: : Encoded Sparse Vector generation from Text sequence files
  seq2sparse: : Sparse Vector generation from Text sequence files
  seqdirectory: : Generate sequence files (of Text) from a directory
  seqdumper: : Generic Sequence File dumper
  seqmailarchives: : Creates SequenceFile from a directory containing gzipped mail archives
  seqwiki: : Wikipedia xml dump to sequence file
  spectralkmeans: : Spectral k-means clustering
  split: : Split Input data into test and train sets
  splitDataset: : split a rating dataset into training and probe parts
  ssvd: : Stochastic SVD
  streamingkmeans: : Streaming k-means clustering
  svd: : Lanczos Singular Value Decomposition
  testnb: : Test the Vector-based Bayes classifier
  trainAdaptiveLogistic: : Train an AdaptivelogisticRegression model
  trainlogistic: : Train a logistic regression using stochastic gradient descent
  trainnb: : Train the Vector-based Bayes classifier
  transpose: : Take the transpose of a matrix
  validateAdaptiveLogistic: : Validate an AdaptivelogisticRegression model against hold-out data set
  vecdist: : Compute the distances between a set of Vectors (or Cluster or Canopy, they must fit in memory) and a list of Vectors
  vectordump: : Dump vectors from a sequence file to text
  viterbi: : Viterbi decoding of hidden states from given output states sequence
[root@localhost local]#

(完)

[研究] Apache Mahout 0.8 (svn) 安裝 (CentOS 6.4 x64)
http://shaurong.blogspot.tw/2013/07/apache-mahout-08-centos-64-x64.html

沒有留言:

張貼留言